
A
PPL

IC
A

T
IO

N
 N

O
T

E

App. Note Code: 1D-AA

FTP Streaming
Revision: 1/17

C o p y r i g h t © 2 0 1 6 - 2 0 1 7
C a m p b e l l S c i e n t i f i c , I n c .

i

Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

1. Introduction .. 1

2. Requirements ... 1

3. Simple Single File Scenario 2

4. Simple Multiple Time-Baled Files Scenario 5

5. SlowSequence and Do/Delay/Loop 9

Appendix

A. Example Programs ... A-1

Table
1-1. First OS to Support FTP Streaming ... 1

CRBasic Examples
A-1. Single Appended File .. A-1
A-2. Multiple Time-Baled Files .. A-1

1

FTP Streaming
1. Introduction

Campbell Scientific dataloggers can be set up to stream data to an FTP server.
This allows the datalogger to sit behind a firewall and push its stored data, in
an easy-to-read format, to a computer. No datalogger software is required on
the receiving computer to control the process.

FTP stands for File Transfer Protocol. It is a standard computer network
communication protocol commonly used to copy or move files between
computers.

“Streaming” is a way to transmit data directly from data table memory to a
destination without first having to create a local file copy of the data to be
transferred.

In early 2013, Campbell Scientific implemented the ability to stream data from
dataloggers using FTP. Refer to TABLE 1-1 for the operating systems that
support FTP streaming.

TABLE 1-1. First OS to Support
FTP Streaming

Datalogger OS Version
CR6 01

CR300 Series 05
CR1000 26
CR3000 26

CR800 Series 26
CR200(X) Series does not support

Several changes and enhancements have been made to streaming capabilities in
subsequent OS releases. For best results, use the latest OS in your datalogger.
(See Sending an OS to a local datalogger video tutorial.)

2. Requirements
In this paper we’ll cover two typical scenarios using the FTPClient() CRBasic
instruction to stream data from a data table to an FTP server. In both scenarios
you will need:

1) An FTP server set up on a computer.

o Its IP address (i.e., 192.168.123.456) or a fully qualified domain
name (i.e., computer-name.domain.com)

o The user name and password

o The permissions to read and write file

o Folder(s) or directories set up to receive files. FTPClient() will
not automatically create directories

https://www.campbellsci.com/videos?video=76

FTP Streaming

2

2) An IP enabled datalogger with the latest OS. For example,

o CR6

o CR3000, CR800 series with compatible hardware such as an NL
device (i.e., NL201, NL240, NL121, etc.) or cellular digital
gateway (RavenXTV or RV50). (See
www.campbellsci.com/internet-ip-networks.)

3) An IP connection.

3. Simple Single File Scenario
The simplest configuration will write a single data file to the FTP server. New
data will be appended to that file on a time interval set in the FTPClient()
instruction. This is very similar to the way LoggerNet collects data.

The pertinent instruction in CRBasic Example A-1, Single Appended File (p. A-1),
is FTPClient() configured as such:

FTPResult=FTPClient ("computer-name.domain.com", "Tutorial",
"Tutorial_PW", "FTPTest", "FTP_Tutorial_1.csv", 9, 0, 5, Min,
-1008)

The variable FTPResult will be –1 if successful, 0 if it fails, or –2 if execution
did not occur when the instruction was called (for instance, when the time into
interval conditions are not met). In this example, during normal successful
operations, you will see a result code of –2 most of the time. It will change to
–1 for a few seconds near the top of every 5 minutes.

The first set of parameters are based on the receiving FTP server. See
requirement #1 in Section 2, Requirements (p. 1). Your IP address, user name,
and password will be different from the example screenshot shown below.

https://www.campbellsci.com/internet-ip-networks

FTP Streaming

3

Next, in LocalFileName specify the name of the DataTable that contains the
data you wish to copy to your FTP server. CRBasic Example A-1, Single
Appended File (p. A-1), shows the table name in the instruction DataTable
(FTPTest,1,–1). Type the Table Name in quotes and double-check to make
sure you don’t have any typos.

Because the objective is to have a single file contain a continuous data set,
assign a static RemoteFileName. You will be working with a copy of this file
to analyze your data, so give it a meaningful name and useful extension. This
example uses a .csv extension, but you could use .dat or .txt.

FTP Streaming

4

The PutGetOption code of 9 specifies that the datalogger will be appending to
a file and using what is called a passive connection. Whether a connection is
active or passive depends on how the FTP server is set up. Most datalogger-to-
computer FTP connections are most successful using passive mode.

OptionStream, also called FileOption, specifies how the file will look on the
FTP server. The option code of –1008, as used in this example, generates a
data file that looks like the data file collected by LoggerNet when using the
default settings. Available choices include binary, ASCII, XML and JSON
formats, and variations on what to include in the header. This example uses
option 8, which is a full header in ASCII. To use the file name exactly as
specified in RemoteFileName and not append an incrementing number, add
1000 to the option number. In this example, that results in 1008. To insert the
header once at the top of the file, negate this number (i.e., –1008).

The next group of parameters lets you specify how often and when you want
the datalogger to initiate the connection to the FTP server and stream
previously unsent data to it. IntervalStream and UnitsStream determine how
often, every 5 minutes in this example. NumRecsStream lets you set an offset
to the interval if desired. It is commonly kept at 0 so the connection and data
streaming takes place at the top of the interval. Other typical intervals would be
0,1,Hr to stream hourly, or 0,1,Day to stream once a day at midnight. To
stream once a day at 8 a.m., use 8,24,Hr.

FTP Streaming

5

If the Ethernet connection is lost, the datalogger sends the unsent data and
append when the connection comes back, similar to LoggerNet.

There is no checking of table definitions. If there is a mismatch
but the file name remains the same, a new header will NOT be
inserted.

4. Simple Multiple Time-Baled Files Scenario
Another typical scenario is to write data files containing a set amount of data
and give each file a unique name. For example, every hour write a file
containing an hour’s worth of data. These files are sometimes referred to as
bales.

NOTE

FTP Streaming

6

The pertinent instruction in CRBasic Example A-2, Multiple Time-Baled Files
(p. A-1), is FTPClient() configured as such:

FTPResult=FTPClient ("computer-name.domain.com", "Tutorial",
"Tutorial_PW", "FTPTest2", "FTPBale_Num_", 2, 0, 1, Hr, 8)

The variable FTPResult will be –1 if successful, 0 if it fails, or –2 if execution
did not occur when the instruction was called (for instance, when the timing
conditions are not met). In this example, during normal successful operations,
you will see a result code of –2 most of the time. It will change to
–1 for a few seconds near the top of every hour.

The first three parameters are the same as were used in the Simple Single File
Scenario above. These are based on the receiving FTP server. See requirement
#1 in Section 2, Requirements (p. 1). Your IP address, user name, and password
will be different from the example screenshot shown below.

Next, in LocalFileName, specify the name of the DataTable that contains the
data you wish to copy to your FTP server. CRBasic Example A-2, Multiple
Time-Baled Files (p. A-1), shows the table name in the instruction DataTable
(FTPTest2,1,–1). Type the Table Name in quotes, and double-check to make
sure you don’t have any typos.

FTP Streaming

7

Because the objective is to have separate files containing a set amount of data,
the files on the FTP server will all need unique file names. The
RemoteFileName provides the base name for each file. OptionStream, also
called FileOption, specifies how the file will look on the FTP server.
Additionally, OptionStream affects the name of the files. By default, the file
name created on the server will automatically be appended with an
incrementing file number and a “.dat” file extension.

Using a RemoteFileName of FTPBale_Num_ (notice the final underscore _)
and an OptionStream code of 8, as used in this example, the resulting files on
the FTP server will have names following this pattern: FTPBale_Num_0,
FTPBale_Num_1, FTPBale_Num_2…

The OptionStream code of 8, generates a data file that looks like the data file
collected by LoggerNet using the default settings, which is a full header in
ASCII. Other choices include binary, ASCII, XML and JSON formats, and
variations on what to include in the header.

The PutGetOption code of 2 specifies storing separate files on the FTP server
and using what is called a passive connection. Whether a connection is active
or passive depends on how the FTP server is set up. Most datalogger-to-
computer FTP connections are most successful using passive mode.

FTP Streaming

8

The next group of parameters lets you specify how often and when you want
the datalogger to initiate the connection to the FTP server and stream
previously unsent data to it. IntervalStream and UnitsStream determine how
often, every 1 hour in this example. NumRecsStream lets you set an offset to
the interval if desired. This is commonly kept at 0 so the connection and data
streaming takes place at the top of the interval. Other typical intervals would be
0,12,Hr to stream every 12 hours at noon and midnight, or 0,1,Day to stream
once a day at midnight. To stream once a day at 8 a.m., use 8,24,Hr.

If the Ethernet connection is lost, the datalogger will send the unsent data in
individual files, as expected, when the connection comes back.

FTP Streaming

9

5. SlowSequence and Do/Delay/Loop
In both example programs, the FTPClient() instruction is in a Do/Delay/Loop
in a SlowSequence.

SlowSequence
Do
 Delay(1,10,Sec)
 FTPResult=FTPClient ("computer-name.domain…)
Loop

Instructions within a SlowSequence run at a lower priority than the main
program scan. This makes it possible to run these instructions and not interrupt
or delay instructions in the main scan. The Do/Delay/Loop runs at an
approximate interval as specified in the Delay() instruction, every 10 seconds
in this example, but not necessarily at the top of the interval.

FTP Streaming

10

A-1

Appendix A. Example Programs
In both example programs, the tables names (highlighted) must
match.

CRBasic Example A-1. Single Appended File

Public LoggerTemp, BattV
Public FTPResult

'Define Data Tables.
DataTable (FTPTest,1,-1) 'Set table size to -1 to autoallocate.
 DataInterval (0,15,Sec,10)
 Minimum (1,BattV,FP2,False,False)
 Sample (1,LoggerTemp,FP2)
EndTable

'Main Program
BeginProg
 Scan (1,Sec,0,0)
 PanelTemp (LoggerTemp,250)
 Battery (BattV)
 CallTable FTPTest
 NextScan

 SlowSequence
 Do
 Delay(1,10,Sec)
 'Create file named FTP_Tutorial_1.csv and append data to the file every 5 minutes
 FTPResult=FTPClient ("computer-name.domain.com", "Tutorial", "Tutorial_PW", "FTPTest",
"FTP_Tutorial_1.csv", 9, 0, 5, Min, -1008)
 Loop
EndProg

CRBasic Example A-2. Multiple Time-Baled Files

Public LoggerTemp, BattV
Public FTPResult

'Define Data Tables.
DataTable (FTPTest2,1,-1) 'Set table size to -1 to autoallocate.
 DataInterval (0,15,Sec,10)
 Minimum (1,BattV,FP2,False,False)
 Sample (1,LoggerTemp,FP2)
EndTable

'Main Program
BeginProg
 Scan (1,Sec,0,0)
 PanelTemp (LoggerTemp,250)
 Battery (BattV)
 CallTable FTPTest2
 NextScan

 SlowSequence
 Do
 Delay(1,10,Sec)
 'Create individual files named FTPBale_Num_0, FTPBale_Num_1, FTPBale_Num_2, etc. every hour
 FTPResult=FTPClient ("computer-name.domain.com", "Tutorial", "Tutorial_PW", "FTPTest2",
"FTPBale_Num_", 2, 0, 1, Hr, 8)
 Loop

EndProg

NOTE

Campbell Scientific Companies

Campbell Scientific, Inc.
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd.
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.campbellsci.co.za • cleroux@csafrica.co.za

Campbell Scientific Southeast Asia Co., Ltd.
877/22 Nirvana@Work, Rama 9 Road

Suan Luang Subdistrict, Suan Luang District
Bangkok 10250

THAILAND
www.campbellsci.asia • info@campbellsci.asia

Campbell Scientific Australia Pty. Ltd.
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza

7 Guanghua Road
Chaoyang, Beijing 100004

P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda.
Rua Apinagés, nbr. 2018 ─ Perdizes
CEP: 01258-00 ─ São Paulo ─ SP

BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp.
14532 – 131 Avenue NW
Edmonton AB T5L 4X4

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A.
300 N Cementerio, Edificio Breller

Santo Domingo, Heredia 40305
COSTA RICA

www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd.
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd.
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd.
Fahrenheitstraße 13

28359 Bremen
GERMANY

www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.

http://www.campbellsci.com/
http://www.campbellsci.co.za/
http://www.campbellsci.asia/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	Table of Contents
	1. Introduction
	2. Requirements
	3. Simple Single File Scenario
	4. Simple Multiple Time-Baled Files Scenario
	5. SlowSequence and Do/Delay/Loop
	Appendix A. Example Programs
	Campbell Scientific Companies

