
FROM SENSOR TO DECISION:
EVAPOTRANSPIRATION

DIRK V. BAKER, PhD

Historically, Campbell Scientific largely focused on the 

core technologies of designing and manufacturing data 

loggers, communications peripherals, and software as 

well as providing an open platform capable of integrating 

with a wide variety of sensors and sensing technologies. 

Over the last few years and ongoing into the future, 

Campbell Scientific started taking a more holistic 

approach, encompassing everything from increased 

attention to sensor development all the way to decision 

support. This approach includes data quality assurance 

and control, visualization, and other insights while 

maintaining the key strengths of our core technologies.

There is often a disconnect between measurement 

uncertainty at the sensor or measurement-system level 

and the end decisions made based upon those data. 

This paper uses the calculation of evapotranspiration as 

an example to show how potential uncertainty in the 

measurements influences the estimate of 

evapotranspiration and, hence, decisions based 

upon that calculation.

First, a note on terminology. The terms “error” and 

“uncertainty” are often used interchangeably. This is 

generally acceptable and the semantics of the 

distinction between the two is outside the scope of this 

paper. However, in the specifications for sensors, the 

term used broadly in the industry is “accuracy.” 

Although technically incorrect, the term is so ingrained 

in manufacturing that it is unlikely to change. 

“Uncertainty” is the appropriate word and is the term 

used for the remainder of this paper.

Evapotranspiration
Evapotranspiration (ET) is defined as the movement of water from 
the soil into the atmosphere via evaporation and plant 
transpiration, and has units of depth (inches or millimeters)—the 
inverse of precipitation. 

The key environmental variables driving ET include wind speed, 
solar radiation, air temperature, relative humidity, and vegetation 
type. The influence of the first four of these factors is intuitive:
higher wind speeds, higher solar radiation, and higher air 
temperature all causing an increase in ET while increased relative 
humidity decreases ET (Figure 1). 

Figure 1: 
Schematic of evapotranspiration and the major contributing environmental factors



Where:
Δ = slope of the saturation vapor pressure curve
Rn = net radiation

G = soil heat flux density
γ = psychrometric constant
Cn = numerator constant

T = temperature
u = wind speed
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es = saturation vapor pressure
ea = vapor pressure
Cd = denominator constant

Nearly all these parameters are derived through a series of 
equations (more than 40 in total for the hourly calculation). 

In this formulation, vegetation is treated as a height (short or tall) 
and is incorporated into an adjustment to wind speed based on 
the generalized vegetation height and the height of the wind 
speed observation (sensor mounting height). Vegetation height 
also accounts for leaf area and, therefore, differences in stomatal 
conductance.

The objective of this paper is to use real data and realistic sensor 
uncertainties to derive combined uncertainty estimates for ET. 
More specifically, the paper uses data from two sites in Utah, USA 
and specifications from three sensor combinations to examine 
potential uncertainty around the ET calculation.

Methods
Sites and Data
To compare impacts in somewhat different climates, two sites 
were chosen: one in southern Utah (near St. George) for a dry 
desert climate and one in northern Utah (Logan) where there is 
substantial surface water and irrigated pasture. 

Data for the St. George site were obtained from MesoWest 
(https://mesowest.utah.edu) and the Logan data were from an 
ET107 operated by Campbell Scientific at the Logan office (Figure 2). 
Uncertainties were then added to these measurements based on 
hypothetical combinations of sensors (not necessarily the sensors 
used on those stations). 

Figure 2: 
Data used as the basis for uncertainty estimation from two sites in Utah, USA
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The influence of vegetation type is far more complicated and is 
typically only incorporated in a general way in the calculation. 
(I will discuss more of this later.) Applications for ET include 
decision-making for irrigation, research, and energy balance, 
among others.

The ETSZ() instruction for Campbell Scientific data loggers uses the 
ASCE Standardized Reference hourly formulation of the Penman-
Monteith (P-M) equation for ET (Allen et al. 2005). 



Table 1 shows the combinations of sensors used to base 
uncertainty estimates for combinations of high, medium, and low 
uncertainty. Published specifications for each of these sensors can 
be found on the Campbell Scientific website 
(https://www.campbellsci.com/sensors).

Uncertainty Estimation
To estimate the uncertainty of the ET calculation attributable to the 
sensors alone, a Monte Carlo method was used to combine the 
uncertainties of each sensor. The Monte Carlo method iteratively 
draws from a distribution to obtain aggregated results.

More specifically, for each sensor, the uncertainty was based on the 
published specifications with the key assumptions that the 
distribution of uncertainty was normal, and the specifications 
represented a 95% confidence interval. For each hourly time step in 
a given dataset, an error was added based on a random draw from 
a normal distribution centered at that data point. 

The ET was calculated from the resulting wind, temperature, solar, 
and relative humidity data. This process was repeated 1,000 times 
for each site and each combination of sensors as well as for both 
short and tall reference vegetation to generate distributions of 
combined uncertainty for ET. 

Figure 3a shows an example where the dotted vertical lines show 
time step. Figure 3b shows the assumed distribution around the 
respective data points from which points were randomly selected 
for that iteration of the process.

Figures 3a and 3b: 
An illustration of a step in the iterative Monte Carlo uncertainty estimation process. 
The vertical dotted lines in 3a show a time step. The intersection of those lines with 
the weather data are shown in 3b, also as vertical dotted lines. 

The normal distributions shown in 3b are based on the sensor specifications. For 
each step in the process, a point was randomly selected from these distributions to 
represent the measurement plus uncertainty.

Table 1 High Medium Low

Temperature and 
Relative Humidity

HMP60 HygroVUETM10 HMP155A

Wind Speed 03002 05103 05103

Solar Radiation CS301 CS320 CMP10



Overall, less uncertainty was shown by these simulations for the 
calculated ET than expected (Figures 4a, 4b, and 5). However, there 
were cases that resulted in levels of uncertainty that are important 
whether the application is for irrigation decision-making, research, 
or otherwise. In addition, these uncertainties would be 
compounded over time.

Interestingly, the maximum uncertainties for the daily summed ET 
showed a different pattern. In this case, for 3 of the 12 possible 
combinations of site, sensor uncertainty level, and reference 
vegetation, the maximum uncertainty was greater than 10% and 
two of these were with the Logan data. This is likely due to greater 
variability in the data and uncertainty at the St. George site.

The week’s total ET uncertainty was also maximized in the 
combination of high sensor uncertainty and tall reference 
vegetation at the St. George site (Figure 5).

Figures 4a and 4b: 
Uncertainty estimations for each site (shown in red) are 95% intervals based on 
1,000 iterations of each combination of site, reference vegetation height (short, tall), 
and sensor uncertainty level (high, medium, low – see Table 1). Black lines are ET 
calculated from the original data.

Not surprisingly, the influence of sensor selection is evident as is the 
impact of short versus tall reference (Figures 4a and 4b) with 
substantially greater uncertainty in ET for the sensors with greater 
uncertainty (lower accuracy). This uncertainty is also greater at the 
hotter, drier site in St. George than that in Logan. 

The greatest maximum hourly uncertainty was 32%. This occurred 
with a combination of the St. George data, high uncertainty 
sensors, and tall reference vegetation. Maximum hourly 
uncertainties of greater than 10% occurred for 24 of the 84 
combinations of site, sensor uncertainty level, reference type, and 
day of simulation; most of these occurred at the St. George site.

Figure 5:
Total ET (blue) calculated for the full week from the original data. The red bars 
represent 95% intervals based on 1,000 iterations of each combination of site, 
reference vegetation height (short, tall), and sensor uncertainty level (high, medium, 
low – see Table 1).

Several key assumptions and caveats are important to 
acknowledge. As mentioned, a normal distribution is assumed for 
the uncertainty of each sensor and further assumed that the 
published specifications represented a 95% confidence interval 
applicable to the full measurement range. This distribution has the 
effect that most of the time uncertainty is much smaller than the 
published specification and only rarely occurs at or near the 
specified limits.

Numerous potential distributions may be valid. Some simulations 
using a square distribution where the entire specified range of 
uncertainty were equally likely were also run (data not shown). 
Surprisingly, however, this did not substantially increase the 
uncertainty in ET. This suggests that, relative to other factors, the 
uncertainty in the sensors is small enough that different assumed 
distributions have little influence on the estimate of ET 
uncertainty.

Another key assumption is the P-M model itself. As mentioned 
previously, this model and its implementation (ASCE) is composed 
of many equations with their own sets of assumptions and there is 
a large body of research on the merits of the P-M model, its 
application, adjustments, and alternatives. These include 
substituting more direct measurements for some, or even all, of the 
equations. However, these can be cost prohibitive for some 
applications or large networks.



A final caveat to the generalization of these results is that the data 
were just one week from two sites, both in Utah, USA—a state 
largely characterized by various desert systems. There is also a 
great deal of active work examining the suitability of P-M for 
varying climates.

Closing Thoughts
The primary intent in this work was to use ET to illustrate a process 
to incorporate and account for the influence of measurement or 
sensor uncertainty on insights and decisions based on those data.  
This is not a common practice at least as presented to end users of 
data products. In fairness, it is not a simple practice either. 

ET was chosen because it is commonly used in a variety of 
applications for research, ET products are commonly offered by 
large mesonets, and the calculation uses four common weather 
station measurements.

The results show remarkably little uncertainty in ET; though the 
uncertainties are probably important in at least some scenarios. 
This may, in part, result from the assumptions made about 
uncertainty distributions. Sensors may have smaller uncertainties 
than the specifications indicate. 

There are published sensitivity analyses (e.g., Debnath et al., 2015)—
studies that systematically vary model inputs to examine their 
influence on model results—that have shown greater effects than 
those in this work. However, the amount the inputs were varied was 
substantial, and I sought to use more realistic levels of uncertainty.

As Campbell Scientific continues to broaden its offerings to data 
products and decision support, incorporation and transparency 
around various uncertainties is a critical consideration.
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