
A
PPL

IC
A

T
IO

N
 N

O
T

E

App. Note Code: 1D-X

Using Campbell Scientific
Dataloggers as Modbus Slave
Devices in a SCADA Network

6/16

C o p y r i g h t © 2 0 1 6
C a m p b e l l S c i e n t i f i c , I n c .

i

Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

1. Introduction .. 1

2. Necessary Software ... 1

3. Physical Connections .. 1

4. Supported Function Codes 2

5. Register Mapping ... 2

6. Comprehensive Example ... 2

6.1 Entering IP Settings ... 2
6.2 Adding Modbus Slave Functionality with Short Cut 3

7. Advanced Topics ... 7

7.1 Mapping More Than 20 Values ... 7
7.2 Additional Variable Types ... 9
7.3 Coils ... 9
7.4 Mixing Variable Types Within a Register Map 9
7.5 Changing Byte Order ... 10

Figures
6-1. Entering IP settings in Device Configuration Utility 2
6-2. Modbus Poll software reading CR1000 holding registers 6

Table
6-1. Example Register Map ... 6

CRBasic Examples
7-1. Modbus Program Generated by Short Cut ... 7
7-2. Mixing Variable Types .. 10
7-3. Changing Byte Order ... 10

1

Using Campbell Scientific Dataloggers
as Modbus Slave Devices in a SCADA
Network
1. Introduction

Most Campbell Scientific dataloggers are capable of acting as Modbus slave
devices. On serial connections, they will use the standard Modbus RTU
protocol. IP enabled dataloggers will use the Modbus TCP protocol on IP
connections. In general, any of the available communication ports could be
configured for Modbus communication. Refer to the specification sheet for the
individual datalogger model to view its capabilities. Due to the flexible nature
of the hardware, the Modbus capability of the datalogger must be enabled
through configuration or programming. The aim of this document is to help
you quickly enable the Modbus functionality and configure it to be compatible
with your SCADA system.

Campbell Scientific designs products to be compliant with the official Modbus
specifications. The specifications may be downloaded from www.modbus.org.
Functionality is tested with Modbus Poll by Witte Software.

2. Necessary Software
At a minimum, Short Cut and Device Configuration Utility are needed to
configure a Campbell Scientific datalogger for use as a Modbus slave. Both
may be downloaded or updated at www.campbellsci.com/downloads. For more
complex applications, the CRBasic Editor is needed for programming. The
CRBasic Editor is part of LoggerNet and PC400.

3. Physical Connections
Common physical connections are RS-232, TTL-level RS-232, RS-485, and
Ethernet. Additionally, wireless options such as Wi-Fi are available.
Consideration should be given to proper surge protection of any cabled
connection. Between systems of significantly different ground potential, optical
isolation may be appropriate. Third party optical isolators are available for
RS-232, RS-485, and Ethernet.

Default parameters of serial connections are 115200 baud, no parity, and 1 stop
bit. Other values may be used by changing the datalogger configuration.

The datalogger will need a stable DC power supply. For maximum reliability,
it is recommended to use a battery-backed power supply such as the PS150.
Refer to the datalogger specifications for power supply requirements.

Dataloggers are most commonly mounted on a 1-inch grid backplate inside an
enclosure purchased from Campbell Scientific. Contact Campbell Scientific if
you need a scaled footprint drawing for mounting in a third party enclosure.

http://www.modbus.org/
http://www.campbellsci.com/downloads

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

2

4. Supported Function Codes
Supported Modbus functions are 01, 02, 03, 04, 05, 15, and 16. For an
explanation of these function codes, refer to the Modbus protocol standard.

5. Register Mapping
With their multipurpose nature, Campbell Scientific dataloggers do not have a
fixed Modbus register map. The mapping of values to registers is done by the
user with the datalogger program. The register mapping process is simple to do
with Short Cut. By default, all variables are 32-bit floating point numbers in
CDAB byte order. Other data types and byte orders are possible.

6. Comprehensive Example
This comprehensive example shows how to configure a CR1000-based weather
station to be a Modbus slave device. This information is also directly
applicable to several other models of dataloggers.

6.1 Entering IP Settings
If using an IP connection for communication, the datalogger should first be
configured for the network. Once connected with Device Configuration Utility,
the IP settings may be changed on the Deployment | Ethernet tab as shown in
FIGURE 6-1. If using a Campbell Scientific network link interface on the
CS I/O port, settings need to be entered on the CS I/O | IP tab. If unsure what
to enter for any of these settings, contact your network administrator. Refer to
the datalogger or the network link interface manual for more information.

FIGURE 6-1. Entering IP settings in Device Configuration Utility

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

3

6.2 Adding Modbus Slave Functionality with Short Cut

Create a datalogger program in
Short Cut. For a Short Cut tutorial,
see the datalogger manual or visit
www.campbellsci.com/videos.

Click Sensors in the Progress list.

The Modbus slave functionality is
added in Short Cut similar to adding
another sensor. In the Calculations
& Control | Control subfolder,
double-click Modbus Slave.

http://www.campbellsci.com/videos

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

4

A dialog window is presented with
several fields and options. These
options are discussed in the
following steps.

Select the Com Port Option to use
for Modbus communications.

It is important to note that the PakBus® protocol will not work on the selected Com Port
Option after loading the program. For example, if ComRS232 is selected, Device
Configuration Utility will no longer be able to communicate with the datalogger through its
RS-232 port.

Communication can be recovered by sending a new operating system to the datalogger. This
process will do a full reset of the datalogger. To learn how to send an operating system to a
datalogger, watch the tutorial video at www.campbellsci.com/videos?video=76.

Select the Com Port Baud Rate,
Parity, Stop Bits, and Data Bits to
match the system the datalogger will
be connected to.

If Modbus TCP/IP is selected as
the Com Port Option, IP port 502
will be used. Baud rate, parity, stop
bits, and data bits parameters do not
affect Modbus TCP/IP.

https://www.campbellsci.com/videos?video=76

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

5

The Variable Type field selects the
binary data type the datalogger will
use for placing data in registers. All
the registers on the datalogger will
use the same type. Choose a
Variable Type that is supported by
the master. Set the master to the
same value. Variable Type on other
equipment and software is
sometimes labeled as Data Type.
Master devices typically allow
selection of several different data
types.

If applicable and necessary, enter
the Scale Factor. Refer to Section
7.2, Additional Variable Types (p. 9),
for more information.

Enter the Modbus Address to be
assigned to the datalogger. Some
manufacturers call this the Modbus
ID or Modbus Slave ID.

The Number of Values parameter is
the number of values that will be
mapped to Modbus registers. The
boxes below are used to assign
available variables to particular
registers.

Once all parameters have been filled
in within the Modbus Slave dialog,
click OK to add it to the datalogger
program. Finish the remaining steps
to complete program.

Send the program to the datalogger. Once the program is loaded, the datalogger
will be able to respond to Modbus requests from a master device.

Note that 32-bit values use two registers each. This example will have the
register map shown in TABLE 6-1.

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

6

TABLE 6-1. Example Register Map

Register Value

1,2 BattV

3,4 AirTF

5,6 RH

7,8 WS_mph

9,10 WindDir

11,12 SlrW

13,14 Rain_in

Mapped registers are available as both input and holding registers. The offset
for holding registers is 40,000. Thus, to poll these 7 values with function code
04, request 14 registers starting at 40,001. Most devices do not expect the
offset, so the starting register of 1 can be used.

FIGURE 6-2 shows Modbus Poll software reading holding registers from a
CR1000 running the program created by Short Cut. The wind speed value,
WS_mph, of 1.478 miles/hour is seen starting at register 7.

FIGURE 6-2. Modbus Poll software reading CR1000 holding registers

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

7

7. Advanced Topics
The Modbus functionality accessible by programming with Short Cut meets
many needs, but it is limited. To access more functionality, the datalogger
program must be customized with the CRBasic Editor. Using the CRBasic
Editor, more variables may be mapped to registers, additional variable types
are available, and variable types may be mixed within the register map.

7.1 Mapping More Than 20 Values
CRBasic Example 7-1 is the entire program created by Short Cut in the
previous example. In addition to the needed lines for Modbus communication,
it contains measurements and data storage tables. As this document proceeds,
abbreviated examples will be shown with only the relevant pieces of the
program.

CRBasic Example 7-1. Modbus Program Generated by Short Cut

'CR1000
'Created by Short Cut (3.2)

'Declare Variables and Units
Public BattV
Public PTemp_C
Public TRHData(2)
Public WS_mph
Public WindDir
Public SlrW
Public SlrMJ
Public Rain_in
Public Modbus(7)
Public ModbusCoil(8) As Boolean

Alias TRHData(1)=AirTF
Alias TRHData(2)=RH

Units BattV=Volts
Units PTemp_C=Deg C
Units WS_mph=miles/hour
Units WindDir=degrees
Units SlrW=W/m^2
Units SlrMJ=MJ/m^2
Units Rain_in=inch
Units AirTF=Deg F
Units RH=%

'Define Data Tables
DataTable(Table2,True,-1)
 DataInterval(0,1440,Min,10)
 Minimum(1,BattV,FP2,False,False)
EndTable

'Main Program
BeginProg
 'Use SerialOpen to set RS232 options for Modbus Slave Instruction
 SerialOpen(COM1,115200,3,0,1000)
 'Modbus Slave Instruction
 ModbusSlave(COM1,115200,1,Modbus(),ModbusCoil(),2)

 'Main Scan
 Scan(5,Sec,1,0)
 'Default CR1000 Datalogger Battery Voltage measurement 'BattV'
 Battery(BattV)
 'Default CR1000 Datalogger Wiring Panel Temperature measurement 'PTemp_C'

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

8

 PanelTemp(PTemp_C,_60Hz)
 'CS215 Temperature & Relative Humidity Sensor measurements 'AirTF' and 'RH'
 SDI12Recorder(TRHData(),7,"0","M!",1,0)
 AirTF=AirTF*1.8+32
 '05103 Wind Speed & Direction Sensor measurements 'WS_mph' and 'WindDir'
 PulseCount(WS_mph,1,1,1,1,0.2192,0)
 BrHalf(WindDir,1,mV2500,1,1,1,2500,True,20000,_60Hz,355,0)
 If WindDir>=360 Or WindDir<0 Then WindDir=0
 'CS300 Pyranometer measurements 'SlrMJ' and 'SlrW'
 VoltSE(SlrW,1,mV250,2,1,0,_60Hz,1,0)
 If SlrW<0 Then SlrW=0
 SlrMJ=SlrW*2.5E-05
 SlrW=SlrW*5
 'TE525/TE525WS Rain Gauge measurement 'Rain_in'
 PulseCount(Rain_in,1,2,2,0,0.01,0)
 'Call Data Tables and Store Data
 CallTable Table2
 'Copy values/measurements to Modbus Array
 Modbus(1)=BattV
 Modbus(2)=AirTF
 Modbus(3)=RH
 Modbus(4)=WS_mph
 Modbus(5)=WindDir
 Modbus(6)=SlrW
 Modbus(7)=Rain_in
 NextScan
EndProg

Near the end of the program are several lines that copy values from
measurements to values within an array. For example, this line copies the air
temperature measurement into the second value of an array called Modbus:

Modbus(2)=AirTF

All the values mapped to registers must be in a single array. The
ModbusSlave() instruction references that array. To map more values, extend
the array and copy in more values.

Variables are declared at the beginning of the program. The Modbus array
currently is sized to hold up to 7 values. It is declared with this line:

Public Modbus(7)

If we want to write up to 30 values to the array, we just change the declaration
like this:

Public Modbus(30)

Once the array is sized larger, more values can be copied to the array. In almost
all cases, data values should be copied to the array within the scan. The scan is
contained between the Scan() and NextScan() instructions. It makes sense to
add lines in the same area where Short Cut is already copying measurement in
values to the array.

Modbus(6)=SlrW
Modbus(7)=Rain_in
Modbus(28)=NextMeasurement

Additional measurement values are assigned using the same assignment syntax
as shown above.

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

9

7.2 Additional Variable Types
The last parameter of the ModbusSlave() instruction allows specifying the
variable type to be applied to all registers.

ModbusSlave(COM1,115200,1,Modbus(),ModbusCoil(),2)

The default internal type for variables is 32-bit floating point. To use an integer
type for the Modbus registers, the Modbus array used to hold the data needs to
be set to the Long data type. The Long internal type is a 32-bit signed integer.
The array is set to the Long type by adding as Long to the declaration as
shown above.

Public Modbus(7) as Long

Integer data types will truncate anything after the decimal point. To keep
resolution on your measurements, you may need to scale the values. Scaling
can be done by adding math functions to the assignment lines of code. For
example, to keep a resolution of 0.1 degrees on the temperature measurement
in CRBasic Example 7-1, multiply by 10:

Modbus(2)=AirTF * 10

The Modbus register will then hold tenths of a degree. The Modbus master
device will receive a data value of 752 instead of the 75.21 original data value.
In most cases, the master device could be configured to scale by 0.1 to get the
value back into degrees (75.2). Short Cut allows selection of integer types and
applying a scaling factor (Scale Factor field). CRBasic Editor is needed if
scale factor should not apply to all registers.

7.3 Coils
The example program includes an array called ModbusCoil. It must be
declared as type Boolean. This array is used for the BooleanVariable
parameter of the ModbusSlave() instruction, which maps the coils.

Public ModbusCoil(8) As Boolean

The example program did not assign any values to the coils. A coil may be set
within the program in the same way that values were assigned to registers. In
the example below, LineState could be declared as a Boolean, Float, or Long.
A zero value will result in a coil state of 0, or not set. Any value other than zero
will result in a coil state of 1, or set.

ModbusCoil(2) = LineState

Some functions and measurement instructions directly output a Boolean state.
For example, the state of a control port will be read as either true or false. A
coil can be used as the destination variable. In this example, the state of the C1
terminal is directly saved in ModbusCoil(1):

PortGet (ModbusCoil(1),1)

7.4 Mixing Variable Types Within a Register Map
It is possible to map some values to registers as integers and other values as
floating point. To do this, the array of variables used for ModbusSlave()

Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

10

should be set to type Long. Integer values can be assigned as shown
previously. Floating point values are placed in registers by using the
MoveBytes() instruction. The MoveBytes() instruction will do a binary copy
without changing the format. CRBasic Example 7-2 demonstrates placing an
integer in registers 1 and 2, with a floating point number in registers 3 and 4.

CRBasic Example 7-2. Mixing Variable Types

Public FloatingPoint
Public Modbus(2) As Long
Public ModbusCoil(8) As Boolean

BeginProg
 'Use SerialOpen to set RS232 options for Modbus Slave Instruction
 SerialOpen(COM1,115200,3,0,1000)
 'Modbus Slave Instruction
 ModbusSlave(COM1,115200,1,Modbus(),ModbusCoil(),2)

 Scan(5,Sec,1,0)
 FloatingPoint = 123.456

 'Put floating point value into register 1 and 2 as a scaled integer
 Modbus(1)=FloatingPoint * 1000
 'Put floating point value into registers 3 and 4 as a 32-bit floating point
 MoveBytes (Modbus(2),0,FloatingPoint,0,4)

 NextScan
EndProg

7.5 Changing Byte Order
If you need ABCD byte order (big endian) in place of CDAB order, that can be
changed simply with a parameter of ModbusSlave(). Going from ABCD byte
order to DCBA byte order (little endian) requires using the MoveBytes()
instruction. Some datalogger models internally use DCBA byte order and other
models use ABCD order. The MoveBytes() entry in the CRBasic Editor Help
lists whether a particular datalogger model is big endian or little endian.

This example comes from the help for MoveBytes(). It reverses the byte order
of a 32-bit floating point number. The same code will work for reversing the
byte order of 32-bit integers.

CRBasic Example 7-3. Changing Byte Order

Public big_endian_num
Public lit_endian_num
Dim m, n
BeginProg
 Scan (1,sec,0,0)
 n = 0
 For m=3 to 0 step -1
 MoveBytes (lit_endian_num,m,big_endian_num,n,1)
 n=n+1
 Next m
 NextScan
EndProg

Campbell Scientific Companies

Campbell Scientific, Inc.
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd.
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.campbellsci.co.za • cleroux@csafrica.co.za

Campbell Scientific Southeast Asia Co., Ltd.
877/22 Nirvana@Work, Rama 9 Road

Suan Luang Subdistrict, Suan Luang District
Bangkok 10250

THAILAND
www.campbellsci.asia • info@campbellsci.asia

Campbell Scientific Australia Pty. Ltd.
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza

7 Guanghua Road
Chaoyang, Beijing 100004

P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda.
Rua Apinagés, nbr. 2018 ─ Perdizes
CEP: 01258-00 ─ São Paulo ─ SP

BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp.
14532 – 131 Avenue NW
Edmonton AB T5L 4X4

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A.
300 N Cementerio, Edificio Breller

Santo Domingo, Heredia 40305
COSTA RICA

www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd.
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd.
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd.
Fahrenheitstraße 13

28359 Bremen
GERMANY

www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.

http://www.campbellsci.com/
http://www.campbellsci.co.za/
http://www.campbellsci.asia/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	Table of Contents
	1. Introduction
	2. Necessary Software
	3. Physical Connections
	4. Supported Function Codes
	5. Register Mapping
	6. Comprehensive Example
	6.1 Entering IP Settings
	6.2 Adding Modbus Slave Functionality with Short Cut

	7. Advanced Topics
	7.1 Mapping More Than 20 Values
	7.2 Additional Variable Types
	7.3 Coils
	7.4 Mixing Variable Types Within a Register Map
	7.5 Changing Byte Order

	Campbell Scientific Companies

