EC150 CO2/H2O Open-Path Gas Analyzer # Innovative Design Use as part of open-path eddycovariance systems or as a standalone IRGA #### Overview Campbell Scientific's EC150 is an open-path analyzer specifically designed for eddy-covariance carbon and water flux measurements. As a stand-alone analyzer, it simultaneously measures absolute carbon-dioxide and water- vapor densities, air temperature, and barometric pressure. With the optional CSAT3A sonic anemometer head, threedimensional wind speed and sonic air temperature are measured. #### **Benefits and Features** - New conformal coating helps protect sonic transducers in corrosive environments - ▶ Unique optical configuration gives a slim aerodynamic shape with minimal wind distortion - Analyzer and sonic anemometer measurements are synchronized by a common set of electronics - Maximum output rate of 60 Hz with 20 Hz bandwidth - Low power consumption; suitable for solar power applications - **)** Low noise - Measurements are temperature compensated without active heat control - Angled windows to shed water and are tolerant to window contamination - > Field rugged - > Field serviceable - ▶ Factory calibrated over wide range of CO₂, H₂O, pressure, and temperature in all combinations encountered in practice - **Extensive set of diagnostic parameters** - > Fully compatible with Campbell Scientific dataloggers; field setup, configuration, and field zero and span can be accomplished directly from the datalogger - Speed of sound determined from three acoustic paths; corrected for crosswind effects - Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events ### **Detailed Description** The CSAT3A has the following outputs: - **)** U_x (m/s)* - **)** U_v (m/s)* - **)** U_z (m/s) * - **▶** Sonic Temperature (°C)* - ▶ Sonic Diagnostic* The EC150 has the following outputs: \bigcirc CO₂ Density (mg/m³) - \rightarrow H₂O Density (g/m³) - **▶** Gas Analyzer Diagnostic - **▶** Ambient Temperature (°C) - Atmospheric Pressure (kPa) - **>** CO₂ Signal Strength - ▶ H₂O Signal Strength - **▶** Source Temperature (°C) *The first five outputs require the CSAT3A Sonic Anemometer ## **Specifications** | Operating Temperature
Range | -30° to +50°C | |---|--| | Calibrated Pressure Range | 70 to 106 kPa | | Input Voltage Range | 10 to 16 Vdc | | Power | 5 W (steady state and power up) at 25°C | | Measurement Rate | 60 Hz | | Output Bandwidth | 5, 10, 12.5, or 20 Hz (user-
programmable) | | Output Options | SDM, RS-485, USB, analog (CO $_2$ and H $_2$ O only) | | Auxiliary Inputs | Air temperature and pressure | | Gas Analyzer/Sonic Volume
Separation | 5.0 cm (2.0 in.) | | Warranty | 3 years or 17,500 hours of operation (whichever comes first) | | Cable Length | 3 m (10 ft) from EC150 and CSAT3A to EC100 | | Weight | 1.7 kg (3.7 lb) for CSAT3A head and cables 2.0 kg (4.4 lb) for EC150 head and cables 3.2 kg (7.1 lb) for EC100 electronics | | Gas Analyzer | | | Path Length | 15.37 cm (6.05 in.) A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration. | | Gas Analyzer - CO ₂ F | Performance | |---|--| | -NOTE- | A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration. | | Accuracy | 1% (standard deviation of
calibration residuals) Assumes the following: the gas
analyzer was properly zero and
spanned using the appropriate
standards; CO₂ span | | | concentration was 400 ppm; H ₂ O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. | | Precision RMS (maximum) | 0.2 mg/m ³ (0.15 μmol/mol) | | | Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO ₂ , 12°C dewpoint, and 20 Hz bandwidth. | | Calibrated Range | 0 to 1,000 μmol/mol (0 to 3,000 μmol/mole available upon request.) | | Zero Drift with Temperatur
(maximum) | e±0.55 mg/m³/°C (±0.3 μmol/mol/
°C) | Gain Drift with Temperature ±0.1% of reading/°C (maximum) Cross Sensitivity (maximum) $\pm 1.1 \times 10^{-4} \text{ mol CO}_2/\text{mol H}_2\text{O}$ | Gas Analyzer - H ₂ O Performance | | |---|--| | -NOTE- | A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration. | | Accuracy | Assumes the following: the gas analyzer was properly zero and spanned using the appropriate standards; CO ₂ span concentration was 400 ppm; H ₂ O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. 2% (standard deviation of calibration residuals) | | Precision RMS (maximum) | 0.004 g/m ³ mmol/mol (0.006 mmol/mol) Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO ₂ , 12°C dewpoint, and 20 Hz bandwidth. | | Calibrated Range | 0 to 72 mmol/mol (38°C dewpoint) | |---------------------------------------|--| | Zero Drift with Temperat
(maximum) | cure±0.037 g/m³/°C (±0.05 mmol/mol/°C) | | Gain Drift with Temperat
(maximum) | cure ±0.3% of reading/°C | Cross Sensitivity (maximum) ±0.1 mol H₂O/mol CO₂ | Sonic Anemometer - Accuracy | | |------------------------------|--| | Offset Error | ±0.7° while horizontal wind at 1 m s⁻¹ (for wind direction) < ±4.0 cm s⁻¹ (for u_z) < ±8.0 cm s⁻¹ (for u_x, u_y) | | Gain Error | < ±2% of reading (for wind vector within ±5° of horizontal) < ±3% of reading (for wind vector within ±10° of horizontal) < ±6% of reading (for wind vector within ±20° of horizontal) | | Measurement Precision
RMS | 0.025°C (for sonic temperature) 1 mm s⁻¹ (for u_x, u_y) 0.5 mm s⁻¹ (for u_z) 0.6° (for wind direction) | | Speed of Sound | Determined from 3 acoustic paths (corrected for crosswind effects) | | Rain | Innovative ultrasonic signal processing and user-installable wicks considerably improve the performance of the anemometer under all rain events. | | Ambient Temperature | | | |---------------------|--------------------------|--| | Manufacturer | BetaTherm 100K6A1IA | | | Total Accuracy | ±0.15°C (-30°C to +50°C) | |